https://www.geeksforgeeks.org/avl-tree-set-1-insertion/
https://www.geeksforgeeks.org/avl-tree-set-2-deletion/
From geeks for geek
#include <iostream>
using namespace std;
class Node
{
public:
int key;
Node* left;
Node* right;
int height;
};
// A utility function to get maximum
// of two integers
int max(int a, int b);
// A utility function to get height
// of the tree
int height(Node* N)
{
if (N == NULL)
return 0;
return N->height;
}
// A utility function to get maximum
// of two integers
int max(int a, int b)
{
return (a > b) ? a : b;
}
/* Helper function that allocates a
new node with the given key and
NULL left and right pointers. */
Node* newNode(int key)
{
Node* node = new Node();
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // new node is initially
// added at leaf
return(node);
}
// A utility function to right
// rotate subtree rooted with y
// See the diagram given above.
Node* rightRotate(Node* y)
{
Node* x = y->left;
Node* T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left),
height(y->right)) + 1;
x->height = max(height(x->left),
height(x->right)) + 1;
// Return new root
return x;
}
// A utility function to left
// rotate subtree rooted with x
// See the diagram given above.
Node* leftRotate(Node* x)
{
Node* y = x->right;
Node* T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left),
height(x->right)) + 1;
y->height = max(height(y->left),
height(y->right)) + 1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(Node* N)
{
if (N == NULL)
return 0;
return height(N->left) -
height(N->right);
}
Node* insert(Node* node, int key)
{
/* 1. Perform the normal BST rotation */
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys not allowed
return node;
/* 2. Update height of this ancestor node */
node->height = 1 + max(height(node->left),
height(node->right));
/* 3. Get the balance factor of this
ancestor node to check whether
this node became unbalanced */
int balance = getBalance(node);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key)
{
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key)
{
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
Node* deleteNode(Node* root, int key)
{
// STEP 1: PERFORM STANDARD BST DELETE
if (root == NULL)
{
return root;
}
// If the key to be deleted is smaller
// than the root's key, then it lies
// in left subtree
if (key < root->key)
root->left = deleteNode(root->left, key);
// If the key to be deleted is greater
// than the root's key, then it lies
// in right subtree
else if (key > root->key)
root->right = deleteNode(root->right, key);
// if key is same as root's key, then
// This is the node to be deleted
else
{
// node with only one child or no child
if ((root->left == NULL) ||
(root->right == NULL))
{
Node* temp = root->left ?
root->left :
root->right;
// No child case
if (temp == NULL)
{
temp = root;
root = NULL;
}
else // One child case
*root = *temp; // Copy the contents of
// the non-empty child
free(temp);
}
else
{
// node with two children: Get the inorder
// successor (smallest in the right subtree)
Node* temp = minValueNode(root->right);
// Copy the inorder successor's
// data to this node
root->key = temp->key;
// Delete the inorder successor
root->right = deleteNode(root->right,
temp->key);
}
}
// If the tree had only one node
// then return
if (root == NULL)
return root;
// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
root->height = 1 + max(height(root->left),
height(root->right));
// STEP 3: GET THE BALANCE FACTOR OF
// THIS NODE (to check whether this
// node became unbalanced)
int balance = getBalance(root);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 &&
getBalance(root->left) >= 0)
return rightRotate(root);
// Left Right Case
if (balance > 1 &&
getBalance(root->left) < 0)
{
root->left = leftRotate(root->left);
return rightRotate(root);
}
// Right Right Case
if (balance < -1 &&
getBalance(root->right) <= 0)
return leftRotate(root);
// Right Left Case
if (balance < -1 &&
getBalance(root->right) > 0)
{
root->right = rightRotate(root->right);
return leftRotate(root);
}
return root;
}
// A utility function to print preorder
// traversal of the tree.
// The function also prints height
// of every node
void preOrder(Node* root)
{
if (root != NULL)
{
cout << root->key << " ";
preOrder(root->left);
preOrder(root->right);
}
}
My code
Node* findnode(Node* root, int key)
{
if (root == NULL)
return root;
if (key < root->key)
root->left = findnode(root->left, key);
else if (key > root->key)
root->right = findnode(root->right, key);
else
return root;
}
Node* minValueNode(Node* node)
{
Node* current = node;
while (current->left != NULL)
current = current->left;
return current;
}
Node* maxValueNode(Node* node)
{
Node* current = node;
while (current->right != NULL)
current = current->right;
return current;
}
Node* findbigger(int mScore, Node* node) // finds node that its key value is same or closely bigger than mScore
{
if (node == NULL)
{
return node;
}
if (node->key < mScore)
{
return findbigger(mScore, node->right);
}
else if (node->key > mScore)
{
if (node->left == NULL)
return node;
Node* maxLeft = maxValueNode(node->left);
if (maxLeft->key < mScore)
{
return node;
}
else
{
return findbigger(mScore, node->left);
}
}
else
{
return node;
}
}
728x90